
D1.2 H2020 FET HIVEOPOLIS No 824069

FUTURISTIC BEEHIVES FOR A
SMART METROPOLIS

Deliverable D1.2

Specification of external data & programming interfaces

Lead Beneficiary LLU

Delivery date 24.03.2023

Dissemination Level PU

Version

Project website

1.0

www.hiveopolis.eu

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 824069

Ref. Ares(2023)2166485 - 25/03/2023

D1.2 H2020 FET HIVEOPOLIS No 824069

DELIVERABLE SUMMARY SHEET

Project number

Project Acronym

Title

824069

HIVEOPOLIS

FUTURISTIC BEEHIVES FOR A SMART METROPOLIS

Deliverable No

Due Date

Delivery Date

D1.2

Project month M48

24.03.23

Name

Description

Specification of external data & programming interfaces

Communication interfaces and protocols for external system
connectivity with a bio-hybrid living system will be specified.
Several types of interfaces will be considered, like machine to
machine and machine to human.

Lead Beneficiary

Partners contributed

Dissemination Level

LLU

BST

Public

1

D1.2 H2020 FET HIVEOPOLIS No 824069

Introduction 3
Purpose and scope of the document 3
Overview of the document 3
Acronyms and Abbreviations 3

Infrastructure role in the HIVEOPOLIS ecosystem 4
Protocol analysis 5

Constraints and limitations 5
Application layer protocols 5
Payload format 7
Message encryption 8

Architecture of data & programming interfaces 10
MQTT topic hierarchy 12

Live stream of messages 12
Alert messages 14
Data queries 14
Augmented map service 15
Command messages 15

Protobuf templates 16
Protobuf sniffer utility 18

Notification service 19
Archive services 20
Query engine service 22

Aggregated historical weight 23
Recent temperature measurements 24

Actuator control 25
Augmented map service 26

Weather forecast 27
Harvesting resources model 28

WFS integration 28
Model integration 30

References 32

2

D1.2 H2020 FET HIVEOPOLIS No 824069

Introduction

Purpose and scope of the document
The deliverable D1.2 presents an architecture for inter-HIVEOPOLIS unit communication
and data exchange with external services hosted in the cloud. The aim of such a framework
is to integrate into a common platform: HIVEOPOLIS units, external data sources, cloud
hosted databases and models, user interfaces. The report provides an overview of the
architecture, description of used protocols and specified data & programming interfaces, as
well as example implementations of cloud services.

Overview of the document
This report starts by outlining key elements of the HIVEOPOLIS infrastructure. Chapter 2
focuses on protocol analysis for efficient communication with embedded devices. Chapter 3
specifies data & programming interfaces, describes examples of endpoints and package
formats. Further chapters describe example implementations of cloud services and data &
programming interfaces they provide.

Acronyms and Abbreviations

Acronyms and Abbreviations Definition

ACL Access Control List

CPU Central Processing Unit

DSS Decision Support System

GIS Geographical Information System

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

LAD Rural Support Service of Latvia

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UI User Interface

UUID Universal Unique Identifier

WEB World Wide Web

WFS Web Feature Services

WMS Web Map Service

XML Extensible Markup Language

3

D1.2 H2020 FET HIVEOPOLIS No 824069

Infrastructure role in the HIVEOPOLIS ecosystem
The HIVEOPOLIS concept is not limited to developing highly sophisticated futuristic hives as
stand alone units, but it also implies communication and data exchange between
HIVEOPOLIS units, databases, user interfaces and external data sources.

The aim of task 1.4 is to provide an infrastructure for such communication and data
exchange between various HIVEOPOLIS components via developing data and programming
interfaces available for internal use and integrating required external data sources.

The main counterpart of the infrastructure is the Core module developed in WP3: it manages
signal flows between hardware sensors and actuators, and locally hosts various software
components (such as datastore and models). The latter need access to services for both
external data acquisition and own data sharing and authorised publishing.

Other users of the infrastructure include a) archive and analytical databases hosted in cloud,
b) augmented map service and models, c) various auxiliary services, such as notification or
hardware monitoring utilities, d) integrated external data sources, such as weather forecast,
e) external user interfaces and dashboards.

Figure 1: HIVEOPOLIS components interconnected via data & programming interfaces

This document provides specifications for data & programming interfaces, explains their
implementation peculiarities and demonstrates application examples. The general
communication architecture is specified, however particular data & programming interfaces
cannot be considered complete nor comprehensive and are subject to change depending on
further requirements and demands for data exchange.

4

D1.2 H2020 FET HIVEOPOLIS No 824069

Protocol analysis
Data exchange protocols define a set of rules for how various components communicate
with each other. Specifications of data & programming interfaces depend on the type of
technology used to implement them, thus the protocol framework should be selected
beforehand. Various communication protocols are analysed depending on the level of
application and the most suitable options are selected for implementation.

Constraints and limitations

A number of aspects were considered during analysis of protocol alternatives.

Embedded devices. The main clients for the data & programming interfaces are
HIVEOPOLIS units (central core modules in particular). Core module (ref WP3) in its broad
definition is an embedded device built upon Raspberry Pi single-board computer. Thus
implementation of data & programming interfaces should consider limited computational
resources.

Multiple platforms / programming languages. Besides HIVEOPOLIS units, other clients
for data & programming interfaces will be various systems built for different platforms or
architectures, for example, CPU architectures (ARM, x86, x64, etc), operating systems
(Linux, Windows, Android, MacOS, etc). An additional level of diversity adds a variety of
programming languages. Thus implementation of data & programming interfaces should be
platform independent and support as many target platforms as possible.

Bidirectional data flow. By design data & programming interfaces should support data flow
in both directions: to and from the client. Moreover, the initiator can be on any side of the
communication channel.

Integration with the central core. Data & programming interfaces are designed in close
relation with Data warehouse with implemented DSS (described in D3.3). Integration
between these two data oriented systems was considered as a first priority feature.

Application layer protocols

In a simplified manner the task for data & programming interfaces can be described as
transferring data packages from one network node to another. However, implementation of
custom networking and/or transport protocol was not considered within the scope of the
deliverable.

Also there could be good justification for implementing custom HIVEOPOLIS specific
application layer protocol for data & programming interfaces, the task — data exchange
between nodes — is quite a common use case for the majority of general purpose
applications. Thus several available application layer protocols (and solutions) are analysed
in this section.

5

D1.2 H2020 FET HIVEOPOLIS No 824069

HTTP. One of the widely used application layer protocols is Hypertext Transfer Protocol
(HTTP). It is a text based request-response protocol for client-server systems widely used
for WEB applications. All major platforms and architectures have various implementations
both for client and server side components.

Despite widespread use of HTTP for WEB applications it has several drawbacks in a context
of HIVEOPOLIS tasks. HTTP supports only peer-to-peer data exchange. However
HIVEOPOLIS units (and other services) are considered as loosely coupled components with
one-to-many communication strategy (broadcasting) being a common use-case. Thus a
dedicated solution for message routing is needed.

The request-response nature of HTTP protocol implies that the communication initiator is a
client, effectively limiting data exchange to one-way flow. However, there is a need for
two-way data exchange among HIVEOPOLIS components (e.g. stream of sensory readings
from hives to cloud services, or control commands from UI to hives). There are solutions for
HTTP protocol that support two-way communication channels, such as polling or
WebSockets.

Use of HTTP protocol one way or another implies the use of server software. Which
depending on deployment configuration can be a limiting factor especially for embedded
devices.

Message brokers are dedicated solutions for data exchange between various components.
These brokers implement their own (often binary) communication protocols and support
various message routing and processing schemas. Software packages such as ActiveMQ,
Kafka, Redis can be mentioned as a few examples of message broker implementations.

In various sources message brokers are categorised as a special type of NoSQL databases
and the key feature of these implementations is scalability. Message brokers are designed to
support high-load systems. Also there is a potential need for high-load support in
HIVEOPOLIS ecosystem in case it rapidly becomes widespread, but in a scope of project
tasks such scenarios are not considered.

Similarly to the previous options, message brokers are software packages usually hosted on
dedicated servers (or even clusters of servers) and are not suitable for embedded
components.

MQTT is a lightweight protocol specially designed for IoT applications (Nastase, 2017). It
has benefits of both previously mentioned types of protocols and solutions. MQTT
implements message broker architectural pattern (publish-subscribe), but uses simplified
networking schema, thus making it suitable for embedded devices with limited resources.
MQTT design incorporates such use-cases as connectivity interruptions, optional message
delivery assurance, flexible message topic hierarchy and others.

MQTT was evaluated in a context of integrating data & programming interfaces with the
Core module. It is well suited for “local” inter-module communication within the Core (ref
D3.3), and also supports communication with “remote” data & programming interfaces via
bridging feature. Taking into account features of MQTT protocol, its relative simplicity,

6

D1.2 H2020 FET HIVEOPOLIS No 824069

available implementations and expertise within the project it was selected as technology for
application level protocol.

Similarly to other solutions MQTT operation relies on message broker software for routing
the communication. Open source Eclipse Mosquitto message broker was used for this
purpose. Its lightweight implementation is suitable for all types of devices and was deployed
both on embedded Core modules and on the private hosting platform.

Payload format

Application layer protocols ensure message exchange between network nodes according to
specific (application defined) rules. In case of MQTT these rules are publish-subscribe
architecture pattern, message arrangement according to hierarchical topics, quality of
service indicators, etc. However the content of the message itself — the payload — is not
specified by the protocol and in case of MQTT is an array of bytes.

Few payload format options were considered for data & programming interfaces. One of the
considered payload formats is JSON (https://www.json.org/json-en.html). It is a text based
platform independent data exchange format widely used for Web applications. The main
benefit of the JSON format is that messages are transmitted as human-readable text, thus
simplifying debugging and problem investigation. The main drawback of the JSON is related
to its strengths. As a text based format it is relatively verbose thus its use for message
exchange will increase network traffic, which in turn is not desirable for embedded devices
with limited connectivity like HIVEOPOLIS hives.

Also JSON is not ensuring any strict structure for the data messages. This fact makes JSON
a very attractive option for prototyping phase while requiring additional efforts on message
schema implementation and validation on later stages both on message sender and receiver
sides.

With the aim to reduce message size binary message formats were considered such as
Protocol buffers. Protobuf (Currier, 2022) is an open source data format for serialisation of
structured data. Protobuf source code generation feature makes it available for a wide range
of platforms and programming languages. At the same time low processing overhead
promotes its use on embedded devices.

Flatbuffers is another binary serialisation format well suited for low memory
implementations (Pradana et al., 2019) via “zero-copy” deserialization. While this feature
makes data accessing faster and is especially important for embedded platforms, it requires
more code for proper message handling. Also Flatbuffers are more restrictive on message
contents because of fixed size field encoding. Taking into account the niche benefits and
need for additional coding effort Flatbuffers were not further considered for implementation
data & programming interfaces.

Payload formats were compared on relatively simple messages produced by embedded hive
monitoring devices (more info in chapter Archive services). The devices on a regular basis

7

D1.2 H2020 FET HIVEOPOLIS No 824069

are sending information about their battery charge, WiFi level, readings from load cell and
multiple temperature sensors.

An example of a JSON encoded message is demonstrated below. Its minified version is 221
bytes long.

{
"battery": 3971.6294088924633,
"modemBattery": 4102.063873291016,
"scale": 73.0631794649012,
"rssi": -79,
"tempSensors": [
{
"serialNumber": 1025696878698943272,
"value": 34.9375

},
{
"serialNumber": 8591744252680639272,
"value": 16.125

}
]

}

Protobuf schema for encoding similar messages is as follows:
syntax = "proto3";

message TempSensor {
float value = 1;
uint64 serialNumber= 2;

}

message MeasurementNode {
float battery = 1;
float modemBattery = 2;
float scale = 3;
sint32 rssi = 4;
repeated TempSensor tempSensors = 5;

}

The same payload serialised to binary string is 47 bytes long. Its HEX representation is as
follows:

0d83 3080 4515 5920 9242 189d 012a 0f0d
00c0 0b42 10a8 a6cf b087 bc80 9e0e 2a0f
0d00 0081 4110 a8a6 a2b0 87bc 809e 77

Code bindings for Python and C/C++ were generated from Protobuf schema. The latter were
used for embedded software deployed on measurement devices.

Taking into account results of analysis Protobuf was selected as a payload format for both
internal Core data exchange and communication with data & programming interfaces.

Message encryption

MQTT is a simplified communication protocol designed for embedded and IoT applications.
However, as a flip side for simplicity, the security aspect of communication is not considered
as a priority. As a result MQTT messages (including payload) are transmitted in plain text.

8

D1.2 H2020 FET HIVEOPOLIS No 824069

Insecure upstream of measurements from IoT devices might not have an impact on the
overall system (apart from leaking private data together with measurements). However
HIVEOPOLIS scenarios imply active control of units, thus making insecure messages a
significant threat.

MQTT community suggests several ways to make the communication secure. The option
widely used for IoT applications is the use of private networks, either physical or virtual via
tunnelling. Effectively this option moves security implementation from MQTT to lower
networking layers. However it needs dedicated infrastructure and centralised configuration of
network nodes, which is not desirable for the HIVEOPOLIS ecosystem.

Another option is to keep MQTT messages insecure but use encryption (and validation) on a
payload level. This provides a very flexible solution, but it requires additional efforts for
implementing proper authentication and authorization mechanisms. Also this option ignores
available authentication mechanisms available within the MQTT protocol itself.

The combination of mentioned options uses MQTT over TLS. It creates a secure transport
channel between client and broker, and uses MQTT native authentication and authorization
mechanisms. This approach requires no special configuration on the client side (except root
certificates, which are available by default in all modern systems). Also the use of native
MQTT authentication simplifies client side software. As a downside broker side requires a
registered domain with a valid SSL certificate.

The latter option is used for implementing messaging between HIVEOPOLIS Core modules
and components of data & programming interfaces. It was validated by analysing packages
transmitted between client and broker using tshark utility.

tshark -i lo -f "dst port 8883" -d "tcp.port==8883,mqtt" \
-Y "mqtt" -O "mqtt"

Insecure MQTT package was successfully decoded and plain text credentials obtained
(marked in red).

MQ Telemetry Transport Protocol, Connect Command
Header Flags: 0x10, Message Type: Connect Command

0001 = Message Type: Connect Command (1)
.... 0000 = Reserved: 0

Msg Len: 22
Protocol Name Length: 4
Protocol Name: MQTT
Version: MQTT v3.1.1 (4)
Connect Flags: 0xc2, User Name Flag, Password Flag,

QoS Level: At most once delivery (Fire and Forget),
Clean Session Flag

1... = User Name Flag: Set
.1.. = Password Flag: Set
..0. = Will Retain: Not set
...0 0... = QoS Level: At most once delivery (0)
.... .0.. = Will Flag: Not set
.... ..1. = Clean Session Flag: Set
.... ...0 = (Reserved): Not set

Keep Alive: 60
Client ID Length: 0
Client ID:
User Name Length: 5

9

D1.2 H2020 FET HIVEOPOLIS No 824069

User Name: testB
Password Length: 1
Password: b

In case of MQTT over TLS only the header of the MQTT package is decoded.
MQ Telemetry Transport Protocol, Connect Command

Header Flags: 0x16, Message Type: Connect Command
0001 = Message Type: Connect Command (1)
.... 0110 = Reserved: 6

Msg Len: 3
Protocol Name Length: 257

[Malformed Packet: MQTT]

The main drawback of MQTT over TLS approach is the traffic overhead needed for
establishing TLS connection between client and broker. The encryption is implemented on
the transport layer within TCP connection. Network nodes negotiate secret keys for
encryption by interchanging with a number of technical messages, such as certificates and
ciphers (so called handshake). During MQTT experiments low level network packages were
monitored and it was found that the total overhead to establish a new TLS connection
between client and broker is 6 567 bytes. In comparison, regular non-TLS connection
initialization needs 668 bytes of technical messages. Further communication via encrypted
connection doesn't have significant overhead and is comparable to regular TCP
communication.

Architecture of data & programming interfaces
Overall the architecture of data & programming interfaces relies on MQTT protocol features
and utilises MQTT broker implementation for message exchange between nodes. This
chapter describes several MQTT specific features used for making the system extendable
and simplify its maintenance.

MQTT broker can be considered as a central data exchange node which has primary
responsibility to route messages between clients. In addition MQTT brokers are usually
responsible for client authentication and authorization.

Within the HIVEOPOLIS project Mosquitto MQTT broker implementation is used, which also
supports so-called bridging between several brokers. This feature allows building
hierarchical snowflake-like data exchange structures. Lower level broker connects to another
(higher level) broker as a regular client and routes messages from its own clients to a higher
level and vice versa using a set of defined rules.

This feature is used to exchange messages between HIVEOPOLIS Core modules to Data &
programming interfaces hosted in the cloud. Each Core module runs its own MQTT broker
restricted only to local clients. This broker is not using any client authentication and can be
used for internal purposes (ref D3.3). In addition, local brokers are configured to connect to
the cloud broker using provided credentials and to map local topics with prefix ho/# to
corresponding topics with prefix ho/<username>/#.

10

D1.2 H2020 FET HIVEOPOLIS No 824069

The cloud broker is a public service with disabled anonymous access. All clients connecting
to the broker should pass authentication procedure according to a database of credentials
and are authorised to publish/subscribe only to their own global subtopic. This ensures that
clients are isolated from each other and private information is not leaking between clients.
Also in case of faulty or malicious configuration of the client it won’t be able to interfere with
other subsystems due to topic restrictions.

In addition certain cloud services are authorised to access specific topics needed for their
operation. For example, notification service is provided with read-only access to alert topics
of all clients. In general such services are hosted in a controlled environment and have
minimal required access rights for their operation.

An example of configuration for local broker is as follows:
listener 1883
allow_anonymous true

bridge
connection hocloud
address science.itf.llu.lv:18883
remote_username hive1
remote_password password1
bridge_cafile /usr/share/ca-certificates/mozilla/ISRG_Root_X1.crt
topic # both 0 ho/ ho/hive1/

An example of configuration for cloud broker is as follows (in this case TLS connection is
ensured by network infrastructure before the traffic reaches MQTT broker):

listener 1883
allow_anonymous false

database of encrypted credentials
password_file /mosquitto/config/clients
access control list
acl_file /mosquitto/config/acl

An example of access configuration (ACL) for cloud broker is as follows:
notification service
user notification_service
topic read ho/+/alert/#

read/write into own topics (%u is a placeholder for username)
pattern readwrite ho/%u/#

Figure 2 shows all mentioned aspects of data & programming interfaces, involved
components and their interconnections. More details about specific hosted services are
provided in further chapters.

11

D1.2 H2020 FET HIVEOPOLIS No 824069

Figure 2: Overall architecture of Data & programming interfaces

MQTT topic hierarchy

MQTT protocol does not provide any naming conventions for topics. However for proper
message delivery and processing, publishing and subscribing clients should agree on the
same naming schema. In order to keep topic names organised across various HIVEOPOLIS
components the hierarchy of topics is proposed. The hierarchy is not limited to mentioned
cases and can be extended or modified according to specific requirements or use-cases.

The topics are described in the form of local names. If the topic is used in a global context,
the client username is added to the prefix according to mapping rules where applicable. For
example:

● ho/live/sensors/broodnest/M49cRSbf
Local topic on hiveA

● ho/hiveA/live/sensors/broodnest/M49cRSbf
Global topic available for external components

Live stream of messages

The idea behind these topics is to broadcast values from various sources immediately as
they are obtained. Subscribers to these topics are able to process incoming data in a
reactive manner or store them in a database for later use.

ho/live/sensors/:source/:id

12

D1.2 H2020 FET HIVEOPOLIS No 824069

Live stream of raw readings from various sensors. The source subsystem and sensor
indicator (e.g. serial number or name) are provided for finer details about values. A few
examples are as follows:

● ho/live/sensors/broodnest/M49cRSbf
sensor readings from specific broodnest module (the comb with array of 64
temperature and 2 relative humidity sensors);

● ho/live/sensors/entrance/0
number of bees passed through counting device at entrance (in/out);

● ho/live/sensors/dancefloor/a1
dance detection report.

ho/live/actuators/:source/:id
Live stream of status reports from various actuators. Technically status reports are usually
obtained from sensors built into actuators. However these readings are separated from the
stand alone sensors to indicate “self-reported” origin of values. A few examples are as
follows:

● ho/live/actuators/broodnest/M49cRSbf
broodnest heating device actual and target temperatures, power consumption;

● ho/live/actuators/gates/b9
status of specific gate (opening, closing, progress percentage).

ho/live/system/:source/:id
Live stream of various operating system parameters reported on a regular basis. A few
examples are as follows:

● ho/live/system/disk/raid0
report about used or free space on disk

● ho/live/system/cpu/0
average load report

● ho/live/system/cron/modelA
status of scheduled tasks (started, ended, failed, etc)

ho/live/models/:id
Modelling results reported immediately after computation, including model specific details,
like hyperparameters, periods, forecast uncertainty, etc. A few examples are as follows:

● ho/live/models/population
estimated dynamics of colony population

● ho/live/models/state
detected colony state, like swarming, dead, queenless, active foraging, brood
rearing, etc.

● ho/live/models/storage
estimate of available honey for harvest

ho/live/science/:experiment/:id
Topics dedicated for status reporting of long-running scientific experiments. The need for
such topics was identified for the prototyping and experimental phase of the HIVEOPOLIS
project. A few examples are as follows:

13

D1.2 H2020 FET HIVEOPOLIS No 824069

● ho/live/science/foraging-location/123
status updates on feeders located in various places

● ho/live/science/wintering/987
status updates on comb heating experiment during winter period

Alert messages
The idea of these topics is to report important statuses to involved subscribers. The
consumers of alert messages are notification services, user interfaces or automated safety
mechanisms. The main difference between live messages and alerts is that the latter are
reporting specific events or states that require human intervention.

ho/alert/system/:source/:id
Alert messages from various hardware and software components. A few examples are as
follows:

● ho/alert/system/disk/raid0
disk out of space

● ho/alert/system/cron/taskA
scheduled tasks failed to start

● ho/alert/system/broodnest/M49cRSbf
overheating detected on specific broodnest module

● ho/alert/system/power/0
low battery level

ho/alert/bees/:source
Bee colony related alerts. These messages are distinguished from technology alerts and are
related to biological processes of the bee colony and require beekeeper’s attention. A fFew
examples are as follows:

● ho/alert/bees/broodnest
cannibalism detected

● ho/alert/bees/storage
combs are full of honey

● ho/alert/bees/colony
population of colony decreasing rapidly

Data queries
Building a purely reactive system is not always desirable or even possible. Thus
HIVEOPOLIS components need a mechanism for ad-hoc data queries. Within MQTT (and
publish-subscribe architecture in general) such request-response interaction is usually
implemented as a pair of related topics: one for request itself, and another for response or
acknowledgement and status reporting.

ho/query/:requestId
ho/query/:requestId/resp
In order to distinguish multiple parallel queries from various sources, query topics are
supplied with an unique request ID. There are no specific rules on how request ID is created,
its sole purpose is to track response. Usually a random string is used as an identifier, like

14

D1.2 H2020 FET HIVEOPOLIS No 824069

UUID. This approach allows the request initiator to subscribe for responses only for its own
queries.

There are possible multiple query engines — components responsible for processing
incoming queries — which are fetching requested data from different data sources (e.g. from
local database for recent data points and from archive database for longer history).
Depending on the parameters different engines can handle particular queries, thus making
data access simpler for requesting components (no need for details about internal
organisation of data storages).

Augmented map service
Augmented map service can be considered as a special type of data source which provides
ad-hoc access to results of spatial modelling instead of raw data points. Dedicated topics are
used for different types of queries, but the overall approach is similar to regular query
mechanism: pair of topics with unique request ID is used for data exchange.

ho/map/:queryType/:requestId
ho/map/:queryType/:requestId/resp

Few examples of queries are as follows:
● ho/map/forecast/:requestId

weather forecast for requested GPS coordinates
● ho/map/solar/:requestId

solar radiation parameters for requested GPS coordinates
● ho/map/resources/:requestId

information about potential harvesting resources (flowering plants) for requested
GPS coordinates

Command messages
Previously considered types of messages have informative nature and are used for data
exchange between components. Logically distinct types of messages are dedicated for
active commands for various actuators.

ho/cmd/:target/:id/:requestId
ho/cmd/:target/:id/:requestId/resp
Unique request ID is provided for tracking responses for specific commands. A few
examples are as follows:

● ho/cmd/gates/b9/:requestId
command: close gates
ho/cmd/gates/b9/:requestId/resp
response: ACK, in progress

● ho/cmd/broodnest/M49cRSbf/:requestId
command: set heater target temperature to 42°C
ho/cmd/broodnest/M49cRSbf/:requestId/resp
response: NACK, not enough power

15

D1.2 H2020 FET HIVEOPOLIS No 824069

Additional types of messages and corresponding hierarchical topics can be added to the
data & programming interfaces for specific use-cases.

Protobuf templates
Communication between components of data & programming interfaces relies on binary
messages encoded according to Protobuf specification. However, the structure and content
of the messages is defined by developers for specific use-cases. During the design and
prototyping phase of data & programming interfaces several message structures were
considered.

Protobuf message definitions allow so-called nested messages, when the message contains
other messages as its fields (similar to classes in object oriented programming languages).
Another feature available in Protobuf is Struct data type, which allows implementation of
dynamically typed key-value maps.

Taking into account available features it is possible to build a universal definition suitable for
any message type. Such a wrapper message has few header fields and a field for binary
representation of any data object, including other Protobuf definitions.

import "google/protobuf/struct.proto";

message MessageWrapper {
string module = 1;
string instance = 2;
int64 ts = 3;
google.protobuf.Struct data = 4;

}

Despite being a very flexible and simple structure, such message design has a major flaw.
The content and structure of the data field is not strictly specified thus requiring sending and
receiving counterparties to agree on it outside of protocol specification. This effectively leads
to implementation of custom data definition notation and supporting utilities for it.

Another approach is to embed all possible types of messages as dedicated optional fields
within the wrapper message. OneOf directive ensures that the wrapper contains only one
payload type at once.

message MessageWrapper {
string module = 1;
string instance = 2;
int64 ts = 3;
oneof data {

BroodNest brood_nest = 4;
EnvironmentMonitor env_monitor = 5;
HiveScale hive_scale = 6;
WeatherStation weather_station = 7;
DanceDetection dance_detection = 8;
GNSS gnss = 9;
PowerSupply power_supply = 10;
TrafficFlow traffic_flow = 11;

}
}

16

D1.2 H2020 FET HIVEOPOLIS No 824069

Such message definition provides strict control over payload structure, however it quickly
becomes overcomplicated (the code above shows only part of payloads for encoding sensor
readings). Also field naming tends to become confusing, for example the broodnest module
has both sensors and actuators which need distinct field names.

A slight benefit of using universal wrapper message is the possibility to process (decode) it
at a single component and select appropriate action depending on the payload itself.
However taking into account that messages are distributed over hierarchical MQTT topics
there is no strict necessity for such a single endpoint feature.

Thus the opposite way of designing messages was selected for implementation: specific
messages are designed for all major use-cases, and embedded payload definitions are
added as fields in a hierarchical manner. At the current stage dedicated messages are
defined for top-level types of messages corresponding to MQTT topic groups, like live
stream, alerts, queries, etc. Specific subtypes of messages are implemented as hierarchical
fields.

The header field is added to all message types. It contains information about the origin
module of the message, its instance identifier (serial number or name) and timestamp. In
addition optional tag values can be added for finer message identification (e.g. hardware
version or firmware release).

message Header {
string module = 1;
string instance = 2;
int64 ts = 3;
map<string, string> tag = 4;

}

An example of a live stream message is shown below. It consists of a header and one of
specific payload messages.

message LiveStreamItem {
common.Header header = 1;
oneof payload {

sensors.SensorLiveItem sensors = 2;
actuators.ActuatorLiveItem actuators = 3;
system.SystemLiveItem system = 4;
models.ModelLiveItem models = 5;

}
}

The payload messages are further detailed as needed. An example of definitions for sensor
messages are as follows.

message SensorLiveItem {
oneof sensors {

Broodnest broodnest = 1;
TrafficFlow traffic_flow = 2;
Scales hive_scales = 3;
PowerSupply power_supply = 4;

}
}

17

D1.2 H2020 FET HIVEOPOLIS No 824069

message Broodnest {
repeated float temp = 1;
repeated float rh = 2;
float co2 = 3;

}

message TrafficFlow {
float bees_in = 1;
float bees_out = 2;

}

message Scales {
float weight = 1;

}

message PowerSupply {
float voltage = 1;
float current_draw = 2;
float charge = 3;

}

In case if the message hierarchy becomes overly complicated or a message type contains
too many subtypes it is possible to move the root level of the messages to the higher more
detailed definitions.

Protobuf sniffer utility

Protobuf messages are encoded into binary strings and sent as MQTT payload. However,
investigating and debugging such communication is a tedious task. There are tools capable
of subscribing for specific MQTT topics and logging transferred messages. Such tools are,
however, not able to decode binary payloads.

Thus special sniffer utility is developed which is able to subscribe for specified topics and
logs decoded messages in a human readable way. An example of its output is shown below.
Also the sniffer utility was used in D3.3 demonstration videos.

(ho-interfaces) user@host:~/ho-protocols-sniffer$ python main.py
2023-01-27 11:22:05 INFO Using provided client credentials
2023-01-27 11:22:05 INFO Connecting to science.itf.llu.lv:18883
2023-01-27 11:22:05 INFO Connected to broker as "HO MQTT sniffer sCp6a3dd0d"
2023-01-27 11:22:05 INFO Subscribed for ho/#
2023-01-27 11:23:25 MESSAGE ho/hiveA/alert/system/testing/abc
header {
module: "testing"
instance: "abc"
ts: 1674811405

}
system {
power_failure {
}

}

2023-01-27 11:31:24 MESSAGE ho/hiveA/live/sensors/power_supply/demo1
header {
module: "power_supply"
instance: "demo1"

}
sensors {

18

D1.2 H2020 FET HIVEOPOLIS No 824069

power_supply {
level: High

}
}

Notification service
The main task of this service is to notify users about relevant alerts occurring within the
HIVEOPOLIS ecosystem. Depending on the type of alert and specific use-case the target
audience can be beekeepers, technical engineers or scientific community. The notification
channel highly depends on the audience and its preferences.

For demonstration purposes the notification service was implemented as standalone service
which subscribes for all alerts in the global topics:

● ho/+/alert/#
“+” sign is a placeholder for client usernames;
“#” sign allows any suffix on the topics (effectively all types of alerts from any
component).

The service has read-only access to specified messages as defined in broker’s ACL:
user notification_service
topic read ho/+/alert/#

The notifications themself are implemented in a form of Slack messages. The service is
registered as a Slack application with access to a specific channel. It decodes the incoming
MQTT message, converts it into Slack message (applies basic formatting) and posts to the
Slack channel via Webhook feature available for registered applications on Slack platform.
Similar approach is also available almost for all modern communication platforms.

An example of messages as rendered in Slack channel:

19

D1.2 H2020 FET HIVEOPOLIS No 824069

Figure 3: Bee and system alerts rendered as Slack messages

Archive services
There are several applications considered for a live data stream. One is implementing
reactive control scenarios when components perform actions immediately upon receiving
relevant signals from other components. This type of control is demonstrated in D3.3 with
interaction between local components of the Core module. However due to transparent
bridging between local and remote systems it is possible to implement similar reactive
control involving components hosted in the cloud infrastructure.

Another use of live data stream is maintaining an archive of messages via storing
transmitted values into a database. Such a database allows queries for historical values and
opens possibilities for more advanced data processing and modelling, such as trend analysis
or correlations between different parameters.

The latter scenario was actively investigated during the development of data & programming
interfaces. Experiments were performed using available hardware and software solutions. As
a source of live data stream beehive monitoring devices were used. The main unit of the
monitoring device was a resource constrained microchip (ESP8266), thus emphasising the
ability of the developed data & programming interfaces to be used in the embedded
environment.

The hardware specifications for the test devices (ESP8266 microchips) are given below:
● Tensilica L106 ultra-low-power 32-bit CPU with clock speed up to 160 MHz;
● available SRAM space < 50 kB;
● external flash size typically 4 MB, but theoretically up to 16 MB;
● integrated Wi-Fi.

The Protobuf schema that was used for testing was described under chapter “Payload
formats”. The steps that were required for the device to send data over the developed
infrastructure included data encoding according to the defined schema, establishing a
connection (using different types of communication technologies ‒ Wi-Fi, 2G cellular
network) with the hosted MQTT broker and data publishing.

The monitoring devices on a regular basis (approx. every 30 minutes) reported latest
readings from sensors (temperature inside and outside the hive, its weight), as well as
internal parameters of the hardware (battery levels of the main and network modules, WiFi

20

D1.2 H2020 FET HIVEOPOLIS No 824069

connection level). In total 15 hives were monitored during the summer season of 2022. The
experiment provided a sufficient live stream of actual values from the devices.

Dedicated live data stream processing services were developed and hosted in the cloud.
Experiments with several destination archive databases were conducted. The services
connected to the hosted MQTT broker and subscribed to topics dedicated for live stream
messages:

● ho/+/live/#

The services have read-only access to specified messages as defined in broker’s ACL:
user archive
topic read ho/+/live/#

Upon arriving the messages are decoded and put into a task queue for writing records to a
database. Two destination databases were used in parallel during experiments:

● A stand-alone InfluxDB instance hosted in the cloud. Grafana platform is used for
data visualisation.

● SAMS data warehouse, which has a dedicated API for data-in requests. The built-in
user interface is used for data visualisation.

The experiment with multiple archive databases demonstrates the versatility of the
approach. Dedicated services can be fine-tuned for specific types of data or archiving
technologies.

Figure 4: Experimental setup for archive services

21

D1.2 H2020 FET HIVEOPOLIS No 824069

Figure 5: Cumulative weight (kg) of all monitored hives
June 2022, Grafana dashboard (screenshot)

Figure 6: Absolute weight (kg) of the monitored hives in a single apiary
June 2022, SAMS UI dashboard (screenshot)

Overall the experiments demonstrate the benefits of the used distributed architecture: live
data stream providers (publishers) are decoupled from data consumers (subscribers). Both
sides of such data exchange can be independently modified and extended according to
needs. While during experiments the archive services consumed all types of live stream
messages, it is also possible to build an archive service for messages from specific modules
by subscribing to dedicated MQTT sub-topics.

Query engine service
The purpose of this service is to provide controlled access to the archive data via
implementing predefined queries. First of all, the service ensures access authorisation to the
archive. For example, the HIVEOPOLIS modules are authorised to request data only about
themselves, but dedicated models are permitted to access only limited parameters about all
entities. Secondly, the service implements only feasible data queries in a most effective way.

22

D1.2 H2020 FET HIVEOPOLIS No 824069

It prevents external components from running unbounded and ineffective queries which
might affect the performance of the databases.

As described in the architecture chapter, data queries are implemented using the pair of
request-response MQTT topics. The implemented example of the query engine subscribes
for all data requests:

● ho/+/query/+
the first “+” sign is a placeholder for username;
the second “+” sign is a placeholder for request callback ID provided by the sender.

Upon processing the request and results from the database are encoded and sent back to
the corresponding topic. An example of request-response topics are as follows:

● ho/hiveA/query/abc123
request from “hiveA” with callback ID “abc123”

● ho/hiveA/query/abc123/resp
response for “hiveA” with callback ID “abc123”

The requesting component is responsible for tracking its requests and corresponding
responses. The usual procedure implies the following steps: obtaining request ID (e.g
UUID), subscribing for future response, sending the request, upon receiving the response (or
by timeout) unsubscribing from the topic.

Query engine is itself is limited only to data query topics as specified in MQTT broker ACL
configuration:

user query_engine
topic read ho/+/query/+
topic write ho/+/query/+/resp

Depending on the query type the request message contains different parameters. A few
examples of data queries are implemented in the service.

Aggregated historical weight
This type of query accepts requests with specified start and end timestamps and in the
response returns the aggregated weight for the given period. Corresponding Protobuf
definitions are as follows:

message HistoricalWeight {
int64 start_ts = 1;
int64 end_ts = 2;

}

message HistoricalWeightResult {
float min_weight = 1;
float max_weight = 2;
float mean_weight = 3;

}

Actual request-response messages sent via MQTT are as follows (log from the Protobuf
sniffer utility):

2023-02-01 14:43:35 MESSAGE ho/hive06/query/c2092076-4ba3-4e12-a58e-3e31da61dff0
header {

23

D1.2 H2020 FET HIVEOPOLIS No 824069

module: "demo"
instance: "0"
ts: 1675255415

}
historical_weight {
start_ts: 1654030800
end_ts: 1656622800

}

2023-02-01 14:43:35 MESSAGE ho/hive06/query/c2092076-4ba3-4e12-a58e-3e31da61dff0/resp
historical_weight {
min_weight: 48.635581970214844
max_weight: 143.93418884277344
mean_weight: 123.4678726196289

}

Underlying query for Influx DB instance is as follows:
data = from(bucket: "eternal")
|> range(start: {start_ts}, stop: {end_ts})
|> filter(fn: (r) => r["_measurement"] == "weight" and r["source"] == "{name}")

data |> min() |> yield(name: "min")
data |> max() |> yield(name: "max")
data |> mean() |> yield(name: "mean")

Recent temperature measurements
This type of query provides up to 200 recent temperature data points aggregated depending
on the requested resolution. Corresponding Protobuf definitions are as follows:

message RecentTemperature {
enum Resolution {

Minute = 0;
Hour = 1;
Day = 2;

}
Resolution resolution = 1;

}

message RecentTemperatureResult {
message Record {

int64 ts = 1;
float min = 2;
float max = 3;
float mean = 4;

}
int64 start_ts = 1;
int64 end_ts = 2;
repeated Record records = 3;

}

Request-response MQTT messages are as follows:
2023-02-01 16:08:01 MESSAGE ho/hive06/query/ef58c106-c1e5-47f2-826a-83ed8a252bd9
header {
module: "demo"
instance: "0"
ts: 1675260481

}
recent_temperature {
resolution: Day

24

D1.2 H2020 FET HIVEOPOLIS No 824069

}

2023-02-01 16:08:02 MESSAGE ho/hive06/query/ef58c106-c1e5-47f2-826a-83ed8a252bd9/resp
recent_temperature {
start_ts: 1657980481
end_ts: 1675260481
records {
ts: 1658016000
min: 27.875
max: 32.875
mean: 31.646875381469727

}
records {
ts: 1658102400
min: 23.25
max: 33.6875
mean: 30.227394104003906

}
< ... more records omitted ... >

}

Underlying query for Influx DB instance is as follows:
data = from(bucket: "eternal")

|> range(start: -200{window})
|> filter(fn: (r) => r["_measurement"] == "temperature" and r["source"] == "{name}")

data_min = data
|> aggregateWindow(every: 1{window}, fn: min, createEmpty: false)
|> set(key: "grp", value: "min")

data_max = data
|> aggregateWindow(every: 1{window}, fn: max, createEmpty: false)
|> set(key: "grp", value: "max")

data_mean = data
|> aggregateWindow(every: 1{window}, fn: mean, createEmpty: false)
|> set(key: "grp", value: "mean")

union(tables: [data_min, data_max, data_mean])
|> pivot(rowKey: ["_time"], columnKey: ["grp"], valueColumn: "_value")

Actuator control
As previously described under “MQTT topic hierarchy”, it is also possible to send specific
commands to instruct a certain actuator to perform action. Such a use case was shown in
the D3.3 demonstrator. In this particular case an embedded device was subscribed to a
command request topic and was listening for incoming commands (either related to the
simulation of harvester or evacuation system). Since this time the embedded device acted
as subscriber, the incoming messages were decoded and appropriate action was taken
(open/close harvester; start/stop evacuation system).

Within the HIVEOPOLIS ecosystem actuators are considered only within hives. Thus there
are no cloud services implemented which are listening for commands. However, services for
sending the commands are considered. Command protocol is implemented similarly to
queries and it relies on a pair of MQTT topics for request-response communication. An
example of ACL record is as follows:

user harvesting_procedure

25

D1.2 H2020 FET HIVEOPOLIS No 824069

topic write ho/+/cmd/evacuation/demo1/+
topic read ho/+/cmd/evacuation/demo1/+/resp
topic write ho/+/cmd/harvester/demo1/+
topic read ho/+/cmd/harvester/demo1/+/resp

Corresponding Protobuf messages are implemented as follows:
syntax = "proto3";
package ho.cmd;

import "google/protobuf/struct.proto";
import "ho_protocols/common.proto";

message CommandRequest {
common.Header header = 1;
oneof command {

EvacuationStart evac_start = 2;
EvacuationStop evac_stop = 3;
HarvesterOpen harvester_open = 4;
HarvesterClose harvester_close = 5;

}
}

message CommandResponse {
common.Header header = 1;
oneof result {

ACKResult ack = 2;
NACKResult nack = 3;

}

message ACKResult { }

message NACKResult {
enum Reason {

Unknown = 0;
RequestError = 1;
ResponseError = 2;

}
Reason reason = 1;
google.protobuf.Struct details = 2;

}
}

message EvacuationStart { }
message EvacuationStop { }

message HarvesterOpen { }
message HarvesterClose { }

Augmented map service
The augmented map service is implemented as a stand alone component hosted in the
cloud which provides data & programming interfaces for spatial information. The service
implements data access similar to archive data queries. The pair of MQTT topics is used for
request-response communication. The service connects to the hosted MQTT broker and
serves requests on following topics:

● ho/+/map/+/+
The “+” signs correspond to placeholders for username, request type and ID.

26

D1.2 H2020 FET HIVEOPOLIS No 824069

Appropriate ACL restrictions are configured on the hosted MQTT broker as follows:
user map_service
topic read ho/+/map/+/+
topic write ho/+/map/+/+/resp

Examples of supported data sources and queries are described in following chapters.

Weather forecast
Augmented map service provides an integration with external weather forecast data sources
(as an example OpenWeatherMap is used). It allows weather forecast requests for given
GPS coordinates and returns essential results suitable for embedded platforms. In addition
the service implements a caching mechanism for subsequent requests.

Protobuf definitions for request-response messages are as follows:
message WeatherForecast {
float lat = 1;
float lng = 2;
int32 periods = 3;

}

message WeatherForecastResult {
message Item {

int64 ts = 1;
float temperature = 2;
float humidity = 3;
float wind_speed = 4;
float wind_deg = 5;

}
repeated Item item = 1;

}

Examples of actual messages as logged by the Protobuf sniffer utility are shown below.
2023-02-02 14:38:20 MESSAGE ho/hiveA/map/forecast/a0f160a1-93ed-4c37-aa55-751cb0403541
header {
module: "demo"
instance: "0"
ts: 1675341500

}
weather_forecast {
lat: 56.650943756103516
lng: 23.71440315246582
periods: 2

}

2023-02-02 14:38:20 MESSAGE ho/hiveA/map/forecast/a0f160a1-93ed-4c37-aa55-751cb0403541/resp
weather_forecast {
item {
ts: 1675350000
temperature: 0.6399999856948853
humidity: 81.0
wind_speed: 5.380000114440918
wind_deg: 341.0

}
item {
ts: 1675360800
temperature: 0.18000000715255737

27

D1.2 H2020 FET HIVEOPOLIS No 824069

humidity: 77.0
wind_speed: 5.519999980926514
wind_deg: 343.0

}
}

Harvesting resources model

Augmented map service provides integration with external geographical information systems
(GIS). As an example, the Rural Support Service of Latvia (LAD) is used, which provides
open access to rural field registry via Web Map Service (WMS) and Web Feature Service
(WFS) interfaces. An interactive map of the registry is available at https://karte.lad.gov.lv/.

The registry is used to obtain information about cultivated plants at a requested location,
which is further fed into a model for estimating harvesting resources available for bee
colonies.

WFS integration

WFS Interface Standard provides an interface allowing requests for geographical features
across the web using platform-independent calls (https://www.ogc.org/standard/wfs/).

The LAD registry, among general geometry features, provides information about planted
crops and declared area. In order to access available features a special type of request
should be composed. WFS interfaces rely on XML data format both for requests and
responses.

In general, WFS interfaces should be compatible with each other, however in practice a lot of
functionality is vendor specific. The full report about specific WFS interfaces can be obtained
via GetCapabilities request. The notable parameters are the list of supported endpoints,
output formats, implemented operations, filtering capabilities and coordinate reference
systems.

https://karte.lad.gov.lv/arcgis/services/lauki/MapServer/WFSServer
?service=WFS
&request=GetCapabilities
&version=2.0.0

Geographical features are obtained via GetFeature requests. However without additional
parameters the WFS interfaces will return the default slice of the database (in case of LAD
these are first 2000 records from the north-west corner of map). Thus additional filters
should be provided for more useful results. The filters are XML documents specifying how
WFS interfaces should filter database records before providing a response, however actual
interpretation of the document is WFS vendor specific.

An example of composite XML document for filtering specific types of crops (products) within
defined area is as follows:

<fes:Filter xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:fes="http://www.opengis.net/fes/2.0">
<fes:And>
<fes:Or>

28

https://karte.lad.gov.lv/
https://www.ogc.org/standard/wfs/

D1.2 H2020 FET HIVEOPOLIS No 824069

<fes:PropertyIsEqualTo>
<fes:PropertyName>PRODUCT_CODE</fes:PropertyName>
<fes:Literal>212</fes:Literal>

</fes:PropertyIsEqualTo>
<fes:PropertyIsEqualTo>
<fes:PropertyName>PRODUCT_CODE</fes:PropertyName>
<fes:Literal>919</fes:Literal>

</fes:PropertyIsEqualTo>
</fes:Or>
<fes:Within>
<fes:ValueReference>SHAPE</fes:ValueReference>
<gml:Envelope>
<gml:lowerCorner>23.65 56.6</gml:lowerCorner>
<gml:upperCorner>23.85 56.7</gml:upperCorner>

</gml:Envelope>
</fes:Within>

</fes:And>
</fes:Filter>

For the harvesting resource model it is needed to filter fields within the reach of a bee colony
(circle around the hive with radius of ~3.5 km). Potentially DWithin spatial filter can be used
for this purpose, however the LAD WFS interface does not support it. Thus similar
functionality was implemented via Intersects filter, where reference polygon was
dynamically generated as a circle. The resulting XML document with filter is as follows:

<fes:Filter xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:fes="http://www.opengis.net/fes/2.0">
<fes:Intersects>
<fes:ValueReference>SHAPE</fes:ValueReference>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:posList>
22.88788 56.49753
<... more points omitted ...>
22.94787 56.46753

</gml:posList>
</gml:LinearRing>

</gml:exterior>
</gml:Polygon>

</fes:Intersects>
</fes:Filter>

The response from WFS interfaces is also an XML document with all the details about
matched records. A partial example of such a response is shown below. Also the records
plotted are shown on figure 7.

<?xml version="1.0" encoding="utf-8" ?>
<wfs:FeatureCollection xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wfs="http://www.opengis.net/wfs/2.0"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:LAD="https://karte.lad.gov.lv/arcgis/services/lauki/MapServer/WFSServer"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
timeStamp="2023-02-02T14:25:13Z" numberMatched="unknown" numberReturned="370">
<wfs:member>
<LAD:Lauki gml:id="Lauki.2245203">
<LAD:OBJECTID>2245203</LAD:OBJECTID>
<LAD:PERIOD_CODE>2022</LAD:PERIOD_CODE>
<LAD:PARCEL_ID>16483418</LAD:PARCEL_ID>

29

D1.2 H2020 FET HIVEOPOLIS No 824069

<LAD:PRODUCT_CODE>212</LAD:PRODUCT_CODE>
<LAD:AID_FORMS>VPM</LAD:AID_FORMS>
<LAD:AREA_DECLARED>3.20000000</LAD:AREA_DECLARED>
<LAD:DATA_CHANGED_DATE>2022-05-26T07:47:39</LAD:DATA_CHANGED_DATE>
<LAD:SHAPE>
<gml:MultiSurface gml:id="Lauki.2245203.pl" srsName="urn:ogc:def:crs:EPSG::3059">
< ... geometry definition omitted ... >

</gml:MultiSurface>
</LAD:SHAPE>
<LAD:PRODUCT_DESCRIPTION>Rapsis, ziemas</LAD:PRODUCT_DESCRIPTION>
<LAD:SHAPE.AREA>31991.51256294</LAD:SHAPE.AREA>
<LAD:SHAPE.LEN>1103.74115493</LAD:SHAPE.LEN>

</LAD:Lauki>
</wfs:member>
< ... more wfs:member items omitted ... >

</wfs:FeatureCollection>

Figure 7: Field polygons around Vecauce loaded from LAD database
(reference circle has a 3.5 km radius).

Additional spatial databases can be integrated into augmented map service if specific
information is required.

Model integration

In the next phase the spatial information obtained from the WFS interface should be parsed
and used within the harvesting resource estimation model. For demonstration purposes the
integrated model uses only information about the plants, however it can be extended by
adding more data sources about roads, water bodies, and other spatial features. Models
themself are described in detail in D1.1 and are out of scope of the current document.

Protobuf definitions for harvesting request-response messages are as follows:
message HarvestingResources {
float lat = 1;
float lng = 2;
int64 ts = 3;

}

message HarvestingResourcesResult {
message Field {

30

D1.2 H2020 FET HIVEOPOLIS No 824069

string plant_name = 1;
float amount = 2;
float dir = 3;

}
float overall_index = 1;
float nectar_index = 2;
float pollen_index = 3;
float water_index = 4;
float road_index = 5;
repeated Field field = 6;

}

Examples of actual messages as logged by the Protobuf sniffer utility are shown below.
2023-02-03 11:18:00 MESSAGE ho/hiveA/map/resources/91f113a9-274b-4dc8-8876-8c7120a78ba2
header {
module: "demo"
instance: "0"
ts: 1675415880

}
harvesting_resources {
lat: 56.467529296875
lng: 22.887880325317383
ts: 1675415880

}

2023-02-03 11:18:00 MESSAGE ho/hiveA/map/resources/91f113a9-274b-4dc8-8876-8c7120a78ba2/resp
harvesting_resources {
overall_index: 338.70550537109375
field {
plant_name: "Rapsis, ziemas"
amount: 110.62000274658203

}
field {
plant_name: "Rapsis, ziemas"
amount: 51.95000076293945

}
< ... more fields omitted ... >

}

31

D1.2 H2020 FET HIVEOPOLIS No 824069

References
Currier, C. (2022). Protocol buffers. In Mobile Forensics–The File Format Handbook: Common File
Formats and File Systems Used in Mobile Devices (pp. 223-260). Cham: Springer International
Publishing.

Nastase, L. (2017, May). Security in the internet of things: A survey on application layer protocols. In
2017 21st international conference on control systems and computer science (CSCS) (pp. 659-666).
IEEE.

Pradana, M. A., Rakhmatsyah, A., & Wardana, A. A. (2019, September). Flatbuffers implementation
on mqtt publish/subscribe communication as data delivery format. In 2019 6th International
Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 142-146).
IEEE.

32

